Abstract

A detailed analysis of experimentally obtained temperature-dependent gas-phase kinetic data for the oxygen and carbon monoxide adsorption on small anionic gold (Au(n)(-), n = 1-3), silver (Ag(n)(-), n = 1-5), and binary silver-gold (Ag(n)Au(m)(-), n + m = 2, 3) clusters is presented. The Lindemann energy transfer model in conjunction with statistical unimolecular reaction rate theory is employed to determine the bond dissociation energies E(0) of the observed metal cluster complexes with O(2) and CO. The accuracy limits of the obtained binding energies are evaluated by applying different transition-state models. The assumptions involved in the data evaluation procedure as well as possible sources of error are discussed. The thus-derived binding energies of O(2) to pure silver and binary silver-gold cluster anions are generally in excellent agreement with previously reported theoretical values. In marked contrast, the binding energies of O(2) and CO to Au(2)(-) and Au(3)(-) determined via temperature-dependent reaction kinetics are consistently lower than the theoretically predicted values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call