Abstract
A first-principles quantum chemistry method, based on the Kohn-Sham density-functional theory, is used to investigate the adsorption of CO and O2 on small gas-phase gold cluster anions. The saturated adsorption of carbon monoxide on gold cluster anions AuN- (N=2-7) is discussed. The adsorption ability of CO reduces with the increase of the number of CO molecules bound to gold cluster anions, resulting in saturated adsorption at a certain amount of absorbed CO molecules, which is determined by geometric and electronic properties of gold clusters cooperatively. The effect of CO preadsorption on the electronic properties of gold cluster anions depends on the cluster size and the number of adsorbed CO, and the vertical detachment energies of CO-adsorbed gold cluster anions show a few changes with respect to corresponding pure gold cluster anions. The results indicate that the impinging adsorption of CO molecules may lead to geometry structure transformation on Au3- cluster. For the coadsorption of CO and O2 on Au2-, Au3- isomers, Au4-, and Au6-, we describe the cooperative adsorption between CO and O2, and find that the O2 dissociation is difficult on gas-phase gold cluster anions even with the preadsorption of CO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.