Abstract

was thermomechanically pretreated and used to produce fiberboard with no synthetic binders. The lignocellulosic material was steam exploded using an aqueous vapor process in a batch reactor. Part of the resultant pulp was ground to pass through a 4-mm sieve. The effect of the grinding on the physicomechanical responses of the fiberboard was evaluated. ANOVA methodology was used. The boards obtained with the ground pulp were of better quality that those obtained with the non-ground pulp. The milling process considerably improved the internal bond strength and diminished the density of the board. The other measured properties (MOE, MOR, WA and TS) were not significantly affected by the process. Scanning electron micrographs show that the changes are due to the segregation of packages of fibers and not to the cut of the fibers. This segregation increases the inter-fiber bonding area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.