Abstract
This article presents a quantitative binaural signal detection model which extends the monaural model described by Dau et al. [J. Acoust. Soc. Am. 99, 3615-3622 (1996)]. The model is divided into three stages. The first stage comprises peripheral preprocessing in the right and left monaural channels. The second stage is a binaural processor which produces a time-dependent internal representation of the binaurally presented stimuli. This stage is based on the Jeffress delay line extended with tapped attenuator lines. Through this extension, the internal representation codes both interaural time and intensity differences. In contrast to most present-day models, which are based on excitatory-excitatory interaction, the binaural interaction in the present model is based on contralateral inhibition of ipsilateral signals. The last stage, a central processor, extracts a decision variable that can be used to detect the presence of a signal in a detection task, but could also derive information about the position and the compactness of a sound source. In two accompanying articles, the model predictions are compared with data obtained with human observers in a great variety of experimental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.