Abstract

The detection of slow (5 Hz) center-frequency modulations of formants (signals) can be impaired by the simultaneous presentation of off-frequency modulated formants (maskers) to the same ear [J. Lyzenga and R. P. Carlyon, J. Acoust. Soc. Am. 105, 2792-2806 (1999)]. In the present study we examine this "formant-frequency modulation detection interference (FMDI)" for various binaural masker presentation schemes. Signals and maskers were formantlike complex tones, centered around 1500 and 3000 Hz, respectively. Fundamentals of 80 and 240 Hz were used. The signals were presented to the right ear. The maskers were presented either to the right, the left, or to both ears, and they were either unmodulated or modulated at a slow rate (10 Hz). They had the same fundamental as the signals. Hardly any interference was found for the unmodulated maskers. For modulated maskers, the amount of FMDI depended strongly on the binaural masker presentation scheme. Substantial interference was found for the ipsilateral maskers. Interference was smaller for the contralateral maskers. In both cases the FMDI increased with increasing masker level. Substantial interference was also found for the binaural maskers. Imposing different interaural time and level differences (ITDs and ILDs) on maskers and signals did not affect FMDI. The same was true for the ITD condition when the maskers had different fundamentals than the signals, though FMDI was slightly smaller here. The amount of interference for the binaural maskers was roughly equal to that of the corresponding monaural masker with the largest effect. The data could not be described accurately using a model based on the loudness of the maskers. On the other hand, they were well described by a model in which the amount of FMDI was predicted from a "weighted combination" of the monaural masker levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.