Abstract

Due to technology scaling and harsh environments, a wide range of fault-tolerant techniques exists to deal with the error occurrences. Selecting a fault-tolerant technique is not trivial, whereas more than the necessary overhead is usually inserted during the system design. To avoid over-designing, it is necessary to have an in-depth understanding of the available design options. However, an exhaustive listing is neither possible to create nor efficient to use due to its prohibitive size. In this work, we present a top-down binary tree classification for error detection and correction techniques. At each split, the design space is clearly divided into two complementary parts using one single attribute, compared with existing classifications that use splits with multiple attributes. A leaf inherits all the attributes of its ancestors from the root to the leaf. A technique is decomposed into primitive components, each one belonging to a different leaf. The single attribute splits can be used to efficiently compare the techniques and to prune the incompatible parts of the design space during the design of a technique. This essential single attribute division of the design space is required for the improvement of the techniques and for novel contributions to the fault-tolerance domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.