Abstract

Cyanobacteria are the predominant biota in the Arctic. Interactive effects on Arctic cyanobacteria between climate-change-shifting parameters and anthropogenic contaminants are largely unknown. We utilized a fractional factorial experiment and Arctic cyanobacteria Pseudanabaena biceps Strain PCCC_O-153 to capture the complexity of interacting climate factors, nano-polystyrene (nano-PS) and 2,2´,4,4´-tetrabromodipenyl ether (BDE-47). The short-term binary toxicity of nano-PS and BDE-47 was then examined through experiments, toxicity units, and reference models. The toxic mechanism was further revealed through biochemical analyses and multivariate statistics. We found that BDE-47 and nano-PS had more hazardous effects than changing climate conditions. The mixture had antagonistic effects on PCCC_O-153, attributing to the aggregation of nano-PS, the adsorption of BDE-47, and the wrapping of both contaminants by released extracellular polymeric substances. Binary toxicity was caused by the chain reactions triggered by combining individual contaminants. Total protein was a sensitive target and positively correlated to chlorophyll pigment. Oxidative stress for the mixture mainly resulted from the presence of nano-PS. This is the first study to access the hazardous effects of a mixture of anthropogenic contaminants on Arctic cyanobacteria under ambient and future climates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call