Abstract
A new modulation technique for Continuous Wave (CW) Lidar is presented based on Binary Phase Shift Keying (BPSK) using orthogonal carriers closely spaced in frequency, modulated by Maximum Length (ML) sequences, which have a theoretical autocorrelation function with no sidelobes. This makes it possible to conduct multi-channel atmospheric differential absorption measurements in the presence of thin clouds without the need for further processing to remove errors caused by sidelobe interference while sharing the same modulation bandwidth. Flight tests were performed and data were collected using both BPSK and linear swept frequency modulation. This research shows there is minimal or no sidelobe interference in the presence of thin clouds for BPSK compared to linear swept frequency with significant sidelobe levels. Comparisons between of CO(2) optical depth Signal to Noise (SNR) between the BPSK and linear swept frequency cases indicate a 21% drop in SNR for BPSK experimentally using the instrument under consideration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.