Abstract
The impact of agrochemicals on pollinators, especially honey bees, has drawn significant attention due to its critical implications for worldwide food stability and ecosystems. Given the potential threat of insecticides to honey bees, bees may encounter multiple insecticides simultaneously during foraging. This study investigated the toxic effect of an insecticide mixture (IM) containing acetamiprid (neonicotinoid) and deltamethrin (pyrethroid) on the survival and cognitive appetitive performance of Apis mellifera jemenitica, a vital native pollinator in arid regions of Saudi Arabia. The lethal concentration (LC50) was determined by assessing bees’ mortality rates following exposure to IM through topical and oral routes. Significant bee mortality occurred at 4–48 h post treatment with IM through both exposure routes, showing a trend of increased mortality with higher IM concentrations compared to the control bees. Throughout all tested times, topical exposure proved relatively more effective, resulting in significantly greater bee mortality compared to oral exposure to IM. Food intake declined progressively with rising IM concentrations during oral exposure. The LC50 values of IM at 24 h after treatment were 12.24 ppm for topical and 10.45 ppm for oral exposure. The corresponding LC10, LC20, and LC30 values were 3.75 ppm, 5.63 ppm, and 7.54 ppm for topical exposure and 2.45 ppm, 4.04 ppm, and 5.78 ppm for oral exposure, respectively. The combination index (CI) revealed a synergistic effect (0.43) for topical exposure and antagonistic effects (1.43) for oral exposure, highlighting differential toxicity dynamics. IM exposure significantly impaired cognitive acquisition and memory reinforcement in honey bees, as demonstrated through behavioral assays, indicating potential neurotoxic effects. Learning and memory formation significantly declined at 2, 12, and 24 h after exposure to sublethal concentrations of IM through both topical and oral routes. Thus, evaluating the interactive impact of multiple pesticides on bees’ health and cognitive function is essential, particularly in regions where diverse agrochemicals are routinely utilized.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have