Abstract

The fringe skeleton method is the most straightforward analysis method for phase extraction and widely used in dynamic measurement. Binarization is often required in this method. In the traditional binarization methods, filtering is often a necessary step prior to binarization due to the influence of intrinsic speckle noises in ESPI fringe patterns. In this paper, we propose a binarization method based on local entropy and fuzzy c-means (FCM) clustering algorithm. In this method, the pixels in the given ESPI fringe pattern are clustered into white fringes and black fringes according to their local entropy instead of the original intensity information. There is no need to perform the filtering preprocessing, because the intrinsic speckle noises are utilized as essentials. We evaluate the performance of our method by applying it to the computer-simulated and real fringe patterns. Experimental results demonstrate that the proposed method can achieve the desired binarization results, and the binarization results can give desired skeleton results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.