Abstract

Image segmentation plays an important role in machine vision, image recognition, and imaging applications. Based on the fuzzy c-means clustering algorithm, a kernel-distance-based intuitionistic fuzzy c-means clustering (KIFCM) algorithm is proposed. First, a fuzzy complement operator is used to generate the membership degree whereby the hesitation degree of intuitionistic fuzzy set is generated; second, a kernel-induced function is used to calculate the distance from each point to the cluster center instead of the Euclidean distance; third, a new objective function that includes the hesitation degree is established, and the optimization of the objective function results in new iterative expressions for the membership degree and the cluster center. The proposed KIFCM algorithm is compared with the fuzzy c-means clustering (FCM) algorithm, the kernel fuzzy c-means clustering (KFCM) algorithm, and the intuitionistic fuzzy c-means clustering (IFCM) algorithm in segmenting five images. The experimental results verify the effectiveness and superiority of our proposed KIFCM algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.