Abstract

Nanoparticles can serve as an efficient reaction environment for bimolecular reactions as the reactants concentrate either inside the nanoparticle or on the surface of the nanoparticle. The reaction rate is then controlled by the rate of formation of the reaction pairs. We demonstrate this concept on the example of electron-induced reactions in hydrogen peroxide. We consider two types of nanoparticle environments: solid argon particles, only weakly interacting with the hydrogen peroxide reactant, and ice particles with a much stronger interaction. The formation of hydrogen peroxide dimers is investigated via classical molecular dynamics (MD) simulations on a microsecond timescale. With a modified force field for hydrogen peroxide, we found out a fast formation and stabilization of the hydrogen peroxide dimer for argon nanoparticles, while the reaction pair was formed reversibly at a much slower rate on the water nanoparticles. We have further investigated the electron-induced reactions using non-adiabatic ab initio MD simulations, identifying the possible reaction products upon the ionization or electron attachment. The major reaction path in all cases corresponded to a proton transfer. The computational findings are supported by mass spectrometry experiments, where large ArM and (H2O)M nanoparticles are generated, and several hydrogen peroxide molecules are embedded on these nanoparticles in a pickup process. Subsequently, the nanoparticles are ionized either positively by 70eV electrons or negatively by electron attachment at electron energies below 5eV. The recorded mass spectra demonstrate the efficient coagulation of H2O2 on ArM, while it is quite limited on (H2O)M.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call