Abstract

We show that a film of a suspension of polymer grafted nanoparticles on a liquid substrate can be employed to create two-dimensional nanostructures with a remarkable variation in the pattern length scales. The presented experiments also reveal the emergence of concentration-dependent bimodal patterns as well as re-entrant behaviour that involves length scales due to dewetting and compositional instabilities. The experimental observations are explained through a gradient dynamics model consisting of coupled evolution equations for the height of the suspension film and the concentration of polymer. Using a Flory-Huggins free energy functional for the polymer solution, we show in a linear stability analysis that the thin film undergoes dewetting and/or compositional instabilities depending on the concentration of the polymer in the solution. We argue that the formation via 'hierarchical self-assembly' of various functional nanostructures observed in different systems can be explained as resulting from such an interplay of instabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call