Abstract

Very limited treatment options are available to fight hepatocellular carcinoma (HCC), a serious global health concern with high morbidity and mortality. The integration of multiple therapies into one nanoplatform to exert synergistic therapeutic effects offers advantages over monotherapies. Here, we describe the construction of the nanoplatform Sor@GR-COF-366 for synergistic chemotherapy and photodynamic therapy (PDT) for HCC using a porphyrin-based covalent organic framework (COF-366) coated with N-acetyl-galactosamine (GalNAc) and rhodamine B (RhB), and loaded with the first-line agent, Sorafenib (Sor). The nanoplatform is targeted towards ASGPR-overexpressed HCC cells and liver tissues by GalNAc and observed by real-time imaging of RhB in vitro and in vivo. The nanoplatform Sor@GR-COF-366 exerts an enhanced synergistic tumor suppression effect in a subcutaneous HCC mouse model with a tumor inhibition rate (TGI) of 97% while significantly prolonging survival at very low toxicity. The potent synergistic therapeutic outcome is confirmed in an orthotopic mouse model of HCC with the TGI of 98% with a minimally invasive interventional PDT (IPDT). Sor@GR-COF-366 is a promising candidate to be combined with chemo-IPDT for the treatment of HCC. Statement of significanceThis work describes the construction of covalent-organic frameworks (COFs) modified with glyco-moieties to serve as hepato-targeted multitherapy delivery systems. They combine minimally invasive interventional photodynamic therapy (IPDT) triggered synergism with chemotherapy treatment for hepatocellular carcinoma (HCC). With the aid of minimally invasive intervention, PDT can elicit potent anti-cancer activity for deep solid tumors. This platform shows strong therapeutic outcomes in both subcutaneous and orthotopic mouse models, which can significantly prolong survival. This work showed an effective combination of a biomedical nano-formulation with the clinical operational means in cancer treatment, which is greatly promising in clinical translation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call