Abstract

• FeM@C (M = null, Co, Ni, Mn) composites are synthesized by facile pyrolysis technique from FeM-MIL-88B. • FeM@C composites show controllable and excellent microwave absorption performance. • A minimum RL of −71.4 dB and effective bandwidth to 14.2 GHz with low filler loading (25 wt%) are achieved. • The second metal is doped to optimize the pyrolysis procedure and the electromagnetic parameters. The realization of balance between relative permittivity and permeability is still a great challenge in the development of microwave absorption materials. Based on the controllable MOFs precursor, bimetallic Fe/M (M = Co, Ni, Mn) doped carbon derived from pyrolyzing bimetallic MOFs (FeM-MIL-88B) exhibits intriguing microwave absorption property. By tuning the second metal source and the ratio of Fe/M, in this work we realize impedance matching between free space and the absorber. Optimized FeCo 2 @C exhibits strong EMW absorption performance (-71.4 dB) and broad bandwidth (14.2 GHz) with a low filler loading of 25 wt%. The synergistic effect of the bimetal source on carbonization process and electric/magnetic properties prove that rationally doping the second metal source into the Fe-MOFs precursor to generate bimetallic magnetic nanoparticles/C material play an intensified role to tune the microwave absorption performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.