Abstract

Currently, glaucoma is managed by frequent instillation of bimatoprost eye drop therapy, which showed very poor ocular bioavailability. Contact lens is widely used as medical device to improve the drug retention on the ocular tissues. However, the traditional methods of drug loading in the contact lens matrix showed high burst release and changes the optophysical properties of the contact lens material. In this paper, a novel bimatoprost-loaded silica shell nanoparticles-laden soft contact lenses were developed to achieve sustain drug delivery without altering the optophysical properties of the contact lens. Silica-shell nanoparticles were prepared using octyltrimethoxysilane (OTMS) and microemulsion. Traditional soaking method (SM-BT), direct bimatoprost loading method (DL-BT), and microemulsion-laden contact lens (ME-BT) were developed for comparison. The silica shell-coated nanoparticles-laden soft contact lenses (SiS-BT) showed improved swelling, transmittance, oxygen permeability, and lysozyme adherence compared to SM-BT, DL-BT, and ME-BT lenses. The DL-BT and ME-BT batch showed high bimatoprost lost/leaching during extraction and sterilization steps, with low cumulative drug release. Also, SiS-BT lens showed sustain bimatoprost release for 96 h. In a rabbit tear fluid model, the SiS-BT lens showed high bimatoprost concentration for 72 h compared to ME-BT lens and eye drop therapy. Based on histopathological studies of cornea, the SiS-BT lens was found to be safe for human applications. The data demonstrated the novel application of silica shell nanoparticles to deliver bimatoprost from the contact lens for extended period of time without altering the optophysical properties of the contact lens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.