Abstract
AbstractWe image velocity contrast (bimaterial) interfaces along the Karadere Fault of the North Anatolian Fault Zone, toward the eastern part of the 1999 Izmit Mw 7.4 rupture in NW Turkey, using waveforms recorded by a local seismic network. Applying an automatic procedure for identification and picking of fault zone head waves (FZHW) and direct P arrivals, and manually revising the picks through particle motion analysis, we identify two different groups of FZHW as well as fault zone reflected waves (FZRW). The first group of FZHW has a moveout with respect to the direct P arrivals with distance traveled along the fault, indicating a deep bimaterial interface down to the base of the seismogenic crust with an average velocity contrast of ~3.4%. The second group of FZHW has a constant time difference from the direct P arrivals and is associated with a shallow local interface bounding a low‐velocity damage zone or basin structure that extends to a depth of 4–5 km. While the first group of FZHW exists on the slower crustal block, the second group of FZHW and the FZRW are present generally on both sides of the fault. These phases add to the richness and complexity of the early P waveforms observed at stations close to a large fault. The relatively low velocity contrast across the Karadere Fault compared to values to the west may have helped stopping the Izmit rupture.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have