Abstract

Hyperbilirubinemia, presenting as jaundice, is a life-threatening critical illness in newborn babies and acute severe hepatic failure patients. Over the past few decades, extracorporeal hemoadsorption by adsorbent therapy has been widely applied in the treatment of hyperbilirubinemia. The capability of hemoadsorption depends on the adsorbents. Most of the clinically used bilirubin adsorbents are made up of styrene/divinylbenzene copolymer and quaternary ammonium salt, which usually have poor biocompatibility and weak mechanical strength. To overcome the drawbacks of commercial polymer adsorbents, advanced synthetic and natural polymers with/without nanomaterials have been designed, and novel adsorbent fabrication technologies have also been developed. In this review, the adsorption mechanism of bilirubin adsorbents has been summarized, which is the basic criterion in adsorbent development. Furthermore, the preparation method, adsorption mechanism, relative merits and practicability of the emerging bilirubin adsorbents have been evaluated. Based on the existing studies, this work highlights the future direction of the efforts on how to design and develop bilirubin adsorbents with good overall clinical performance. Perhaps this study can change traditional perspectives and propose new strategies for bilirubin clearance from the aspects of pathogenic mechanisms, metabolic pathways, and material-based innovation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call