Abstract
Dual active bridge (DAB) converters have been widely used in distributed power systems and energy storage equipment. However, the inherent nonlinearity of the DAB converters can cause stability problem, such as output voltage oscillation. In this paper, the dynamic behavior and stability of a digitally controlled DAB converter with a closed-loop controller are studied. First, to accurately study the nonlinear dynamics and stability in a DAB converter, a bilinear discrete-time model considering the output capacitor equivalent series resistance (ESR) and the digital control delay in circuit is established. Based on the model, the nonlinear dynamic characteristic and stability of the DAB converter versus the control parameter are studied. Furthermore, extensive analyses are performed to study the effect of the transformer leakage inductance and the output capacitor ESR on the stability boundaries of the control parameter. The accuracy of the model and the theoretical analyses are validated by simulation and experimental results. The proposed model of the digitally controlled DAB converter can accurately predict the stability boundaries, which can be effectively applied to the design of the system parameters and guarantee stable operation of the converter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.