Abstract
This article is dedicated to the study of bilevel optimal control problems equipped with a fully convex lower level of special structure. In order to construct necessary optimality conditions, we consider a general bilevel programming problem in Banach spaces possessing operator constraints, which is a generalization of the original bilevel optimal control problem. We derive necessary optimality conditions for the latter problem using the lower level optimal value function, ideas from DC-programming and partial penalization. Afterwards, we apply our results to the original optimal control problem to obtain necessary optimality conditions of Pontryagin-type. Along the way, we derive a handy formula, which might be used to compute the subdifferential of the optimal value function which corresponds to the lower level parametric optimal control problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.