Abstract

A new bilevel optimization strategy for wing design is developed, in which the optimizations of the wing-planform and wing-airfoil shapes are decoupled from each other. The design of the wing-planform shape and the shape of the airfoils in several spanwise positions are considered as the goal of the optimization. In the new approach, the design problem is decomposed into a series of subproblems based on the design variables. The design variables defining the wing-planform shape are optimized in a top-level optimization, and the design variables defining the shape of airfoils in several spanwise positions are optimized in several sublevel optimizations. To take into account the influence of the airfoil shape in a specific spanwise position on the shape of the airfoils in other spanwise positions, a series of design variables are added to the design vector of the top-level optimization. The top-level optimizer is responsible for the consistency of the optimization. Using this approach, the number of design variables in the top-level optimization is reduced; the airfoils in several spanwise positions are optimized in parallel; and, instead of complex three-dimensional aerodynamic and structural solvers, much simpler and faster two-dimensional airfoil analysis tools can be used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call