Abstract

BackgroundEarly weaning (EW) results in a transient period of impaired integrity of the intestinal mucosa that may be associated with reduced plasma concentration of glucagon-like peptide-(GLP) 2. We have previously shown that intragastric infusion of chenodeoxycholic acid (CDC) increases circulating GLP-2 in early-weaned piglets. The aim of this study was to expand previous work to establish whether feeding piglets a cereal-based diet supplemented with CDC can improve gut integrity and animal performance immediately after EW. A cohort of 36 piglets weaned at 20 days of age, 6.2 ± 0.34 kg of body weight (BW) were randomly assigned (n = 18) to receive a standard prestarter diet or the same diet supplemented with 60 mg of CDC per kg of initial BW for ad libitum intake until day 14 postweaning. Thereafter, all pigs were fed the same untreated starter diet for 21 days until the end of the study on day 35. On days 1, 7 and 14 blood samples were collected from 6 pigs per treatment to measure plasma GLP-2. On day 15, 6 pigs per treatment were euthanized to obtain intestinal tissue samples for later histological and gene expression analyses.ResultsSupplementing the diet with CDC tended to increase plasma GLP-2 (P < 0.07; 39 %) and the weight of the large intestine (P < 0.10; 11 %), and increased ileal crypt depth (P < 0.04; 15 %) after 14 days of treatment exposure. Although feed intake and BW gain were not affected by treatments, feeding CDC induced the expression of the cytokines TNF-α (P < 0.02; 1.9 fold), IL-6 (P < 0.01; 2.4 fold), and IL-10 (P < 0.006; 2.2 fold) and the tight junctional protein ZON-1 (P < 0.02; 1.5 fold) in the distal small intestine.ConclusionsThis study showed that the oral administration of CDC to early-weaned pigs has the potential to improve the protection of the intestinal mucosa independently of relevant changes in gut growth.

Highlights

  • Weaning (EW) results in a transient period of impaired integrity of the intestinal mucosa that may be associated with reduced plasma concentration of glucagon-like peptide-(GLP) 2

  • The continuous enteral administration of chenodeoxycholic acid (CDC), a primary bile acid known to activate TGR5, to newborn piglets fed parenterally increased the plasma concentration of GLP-2 and prevented gut atrophy otherwise resulting from the lack of enteral nutrition [15]

  • As proposed in that report, it is plausible that the dose of CDC and administration procedure used in our study might have limited the impact of increased GLP-2 secretion on intestinal adaptation to Early weaning (EW)

Read more

Summary

Introduction

Weaning (EW) results in a transient period of impaired integrity of the intestinal mucosa that may be associated with reduced plasma concentration of glucagon-like peptide-(GLP) 2. In recent years bile acids have emerged as potent hormonal regulators capable of stimulating the secretion of GLP-1 (a co-product of proglucagon, released in parallel with GLP-2) from the intestine. This action is mediated by the G-protein-coupled bile acid receptor 1 (GPBAR1, known as TGR5), which is a bile acid sensor expressed on the luminal surface of intestinal L cells [13, 14]. Piglets weaned at 21 days of age, fed a cereal-based diet, and infused intragastrically with a single dose of CDC had increased circulating GLP-2 and tended to have a longer and heavier intestine than their control counterparts [16]. It is important to note, that bile acids may control the integrity of the intestinal barrier by regulating the expression or cellular distribution of TJ proteins through mechanisms unrelated to GLP-2 [17, 18]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.