Abstract
Cytochrome b5 is a microsomal membrane protein which provides reducing potential to delta 5-, delta 6-, and delta 9-fatty acid desaturases through its interaction with cytochrome b5 reductase. Low angle x-ray diffraction has been used to determine the structure of an asymmetrically reconstituted cytochrome b5:DMPC model membrane system. Differential scanning calorimetry and fluorescence anisotropy studies were performed to examine the bilayer physical dynamics of this reconstituted system. These latter studies allow us to constrain structural models to those which are consistent with physical dynamics data. Additionally, because the nonpolar peptide secondary structure remains unclear, we tested the sensitivity of our model to different nonpolar peptide domain configurations. In this modeling approach, the nonpolar peptide moiety was arranged in the membrane to meet such chemically determined criteria as protease susceptibility of carboxyl- and amino-termini, tyrosine availability for pH titration and tryptophan 109 location, et cetera. In these studies, we have obtained a reconstituted cytochrome b5:DMPC bilayer structure at approximately 6.3 A resolution and conclude that the nonpolar peptide does not penetrate beyond the bilayer midplane. Structural correlations with calorimetry, fluorescence anisotropy and acyl chain packing data suggest that asymmetric cytochrome b5 incorporation into the bilayer increases acyl chain order. Additionally, we suggest that the heme peptide:bilayer interaction facilitates a discreet heme peptide orientation which would be dependent upon phospholipid headgroup composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.