Abstract
Genetic diseases of the brain usually have pathologic lesions distributed throughout, thus requiring global correction. Herpes simplex virus-1 (HSV-1) vectors may be especially useful for gene delivery in these disorders since they can spread trans-synaptically along neuronal pathways to distal sites from a localized injection. We have previously shown that a nonpathogenic HSV-1 (strain 1716), which is deleted in the ICP34.5 gene, and expressing the lysosomal enzyme β-glucuronidase (GUSB) from the latency-associated transcript (LAT) promoter, spreads within the brains of GUSB-deficient mucopolysaccharidosis VII mice to reverse the pathognomonic storage lesions throughout the diseased brain. In this study, we tested the ability of the 1716 LAT-GUSB vector to improve behavioral deficits. The treatment significantly decreased anxiogenic behaviors associated with the mutation, as indicated by open-field behavior and decreased neophobia in a novel object-recognition task. The treated mice also exhibited an improvement in cognitive function associated with the cerebral cortex in a familiar object test. The results indicate the functional therapeutic potential of the 1716 LAT-GUSB vector.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have