Abstract
Set partitions avoiding k-crossing and k-nesting have been extensively studied from the aspects of both combinatorics and mathematical biology. By using the generating tree technique, the obstinate kernel method and Zeilberger’s algorithm, Lin confirmed a conjecture due independently to the author and Martinez–Savage that asserts inversion sequences with no weakly decreasing subsequence of length 3 and enhanced 3-nonnesting partitions have the same cardinality. In this paper, we provide a bijective proof of this conjecture. Our bijection also enables us to provide a new bijective proof of a conjecture posed by Duncan and Steingrímsson, which was proved by the author via an intermediate structure of growth diagrams for 01-fillings of Ferrers shapes.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have