Abstract

In this study, edible bigels with different ratios of beeswax-based oleogel to gellan gum-based hydrogel were developed and characterized. Gellan gum formed a 3D network in water through hydrogen bonding. Beeswax formed a crystalline network in the oil phase, which prevented the flow of oil and formed an oleogel. The position of the droplets is fixed by the crystallization of glycerol monostearate (GMS) at the interface. Bigels with different oleogel contents presented different types of O/W (oleogel content was less than 62%), semi-bicontinuous (oleogel content was 62-68%), and W/O bigels (oleogel content was more than 70%), respectively. Rheological experiments showed bigels had a shear thinning ability, which was suitable for extrusion 3D printing. Then the applicability of 3D printing was studied and it was found that the self-supporting ability of bigels became stronger with the increase of oleogel content. Functional pigments were incorporated into the bigel inks, making the 3D printing product nutrient-rich and color customizable. These results would favor guiding the preparation of bigels with adjusted physical properties and delicate structures for 3D food printing to satisfy the personal desire of consumers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call