Abstract

A big Ramsey spectrum of a countable chain (i.e. strict linear order) C is a sequence of big Ramsey degrees of finite chains computed in C. In this paper we consider big Ramsey spectra of countable scattered chains. We prove that countable scattered chains of infinite Hausdorff rank do not have finite big Ramsey spectra, and that countable scattered chains of finite Hausdorff rank with bounded finite sums have finite big Ramsey spectra. Since big Ramsey spectra of all non-scattered countable chains are finite by results of Galvin, Laver and Devlin, in order to complete the characterization of countable chains with finite big Ramsey spectra (or degrees) one still has to resolve the remaining case of countable scattered chains of finite Hausdorff rank whose finite sums are not bounded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.