Abstract

AbstractTwo linear orderings areequimorphicif each can be embedded into the other. We prove that every hyperarithmetic linear ordering is equimorphic to a recursive one.On the way to our main result we prove that a linear ordering has Hausdorff rank less thanif and only if it is equimorphic to a recursive one. As a corollary of our proof we prove that, given a recursive ordinal α, the partial ordering of equimorphism types of linear orderings of Hausdorff rank at most α ordered by embeddablity is recursively presentable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.