Abstract

Users are increasingly turning to big data processing systems to extract valuable information from massive datasets as the field of big data grows. Data analytics platforms are used by e-commerce enterprises to improve product suggestions and model business processes. In order to meet the needs of large-scale data center operation and maintenance management, Internet companies often use Flink to process log data. This paper takes the big data processing and analysis platforms built by Internet financial companies and large banks as examples, and implants a stock prediction model based on Deep Neural Network (DNN). In this context, this paper completes the following work: 1) The research status of big data processing and analysis platforms at home and abroad is introduced. 2) Drawing on the modular design idea, the commercial bank big data platform is designed and the functions of each sub-module are introduced. Then the basic principle and structure of Convolutional Neural Networks (CNN) are expounded. 3) The optimal parameters of Convolutional Neural Networks are selected through experiments, and then the trained model is used for experiments. It can be seen that the stock prediction model proposed in this article has a higher prediction accuracy compared to existing models, which also verifies the validity of the proposed model. Input the data and compare the obtained results with the actual results, and finally show that the model in this paper has a good performance on stock prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.