Abstract
Additive manufacturing (AM) has undergone significant development over the past decades, resulting in vast amounts of data that carry valuable information. Numerous research studies have been conducted to extract insights from AM data and utilize it for optimizing various aspects such as the manufacturing process, supply chain, and real-time monitoring. Data integration into proposed digital twin frameworks and the application of machine learning techniques is expected to play pivotal roles in advancing AM in the future. In this paper, we provide an overview of machine learning and digital twin-assisted AM. On one hand, we discuss the research domain and highlight the machine-learning methods utilized in this field, including material analysis, design optimization, process parameter optimization, defect detection and monitoring, and sustainability. On the other hand, we examine the status of digital twin-assisted AM from the current research status to the technical approach and offer insights into future developments and perspectives in this area. This review paper aims to examine present research and development in the convergence of big data, machine learning, and digital twin-assisted AM. Although there are numerous review papers on machine learning for additive manufacturing and others on digital twins for AM, no existing paper has considered how these concepts are intrinsically connected and interrelated. Our paper is the first to integrate the three concepts big data, machine learning, and digital twins and propose a cohesive framework for how they can work together to improve the efficiency, accuracy, and sustainability of AM processes. By exploring latest advancements and applications within these domains, our objective is to emphasize the potential advantages and future possibilities associated with integration of these technologies in AM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.