Abstract

Digital twin (DT) and additive manufacturing (AM) technologies are key enablers for smart manufacturing systems. DTs of AM systems are proposed in recent literature to provide additional analysis and monitoring capabilities to the physical AM processes. This work proposes a DT framework for real-time performance monitoring and anomaly detection in fused deposition modeling (FDM) AM process. The proposed DT framework can accommodate AM process measurement data to model the AM process as a cyber-physical system with continuous and discrete event dynamics, and allow for the development of various applications. A new performance metric is proposed for performance monitoring and a formal specification based anomaly detection method is proposed for AM processes. Implementation of the proposed DT on an off-the-shelf FDM printer and experimental results of anomaly detection and process monitoring are presented at the end.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.