Abstract
Myoelectric control, the use of electromyogram (EMG) signals generated during muscle contractions to control a system or device, is a promising input, enabling always-available control for emerging ubiquitous computing applications. However, its widespread use has historically been limited by the need for user-specific machine learning models because of behavioural and physiological differences between users. Leveraging the publicly available 612-user EMG-EPN612 dataset, this work dispels this notion, showing that true zero-shot cross-user myoelectric control is achievable without user-specific training. By taking a discrete approach to classification (i.e., recognizing the entire dynamic gesture as a single event), a classification accuracy of 93.0% for six gestures was achieved on a set of 306 unseen users, showing that big data approaches can enable robust cross-user myoelectric control. By organizing the results into a series of mini-studies, this work provides an in-depth analysis of discrete cross-user models to answer unknown questions and uncover new research directions. In particular, this work explores the number of participants required to build cross-user models, the impact of transfer learning for fine-tuning these models, and the effects of under-represented end-user demographics in the training data, among other issues. Additionally, in order to further evaluate the performance of the developed cross-user models, a completely new dataset was created (using the same recording device) that includes known covariate factors such as cross-day use and limb-position variability. The results show that the large data models can effectively generalize to new datasets and mitigate the impact of common confounding factors that have historically limited the adoption of EMG-based inputs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have