Abstract
The quantity of data produced and captured in medicine today is unprecedented. Technological improvements and automation have expanded the traditional statistical methods and enabled the analysis of Big Data. This has permitted the discovery of new associations with agranularity that was previously hidden to human eyes. In the first part of this review, the authors would like to provide an overview of basic Machine Learning (ML) principles and techniques in order to better understand their application in recent publications about cardiac arrhythmias. In the second part, ML-enabled advances in disease detection and diagnosis, outcome prediction, and novel disease characterization in topics like electrocardiography, atrial fibrillation, ventricular arrhythmias, and cardiac devices are presented. Finally, the limitations and challenges of applying ML in clinical practice, such as validation, replication, generalizability, and regulatory issues, are discussed. More carefully designed studies and collaborations are needed for ML to become feasible, trustworthy, accurate, and reproducible and to reach its full potential for patient-oriented precision medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.