Abstract
ABSTRACTCycle time forecasting (CTF) is one of the most crucial issues for production planning to keep high delivery reliability in semiconductor wafer fabrication systems (SWFS). This paper proposes a novel data-intensive cycle time (CT) prediction system with parallel computing to rapidly forecast the CT of wafer lots with large datasets. First, a density peak based radial basis function network (DP-RBFN) is designed to forecast the CT with the diverse and agglomerative CT data. Second, the network learning method based on a clustering technique is proposed to determine the density peak. Third, a parallel computing approach for network training is proposed in order to speed up the training process with large scaled CT data. Finally, an experiment with respect to SWFS is presented, which demonstrates that the proposed CTF system can not only speed up the training process of the model but also outperform the radial basis function network, the back-propagation-network and multivariate regression methodology based CTF methods in terms of the mean absolute deviation and standard deviation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.