Abstract
Illegal dumping, referring to the intentional and criminal abandonment of waste in unauthorized areas, has long plagued governments and environmental agencies worldwide. Despite the tremendous resources spent to combat it, the surreptitious nature of illegal dumping indicates the extreme difficulty in its identification. In 2006, the Construction Waste Disposal Charging Scheme (CWDCS) was implemented, regulating that all construction waste must be disposed of at government waste facilities if not otherwise properly reused or recycled. While the CWDCS has significantly improved construction waste management in Hong Kong, it has also triggered illegal dumping problems. Inspired by the success of big data in combating urban crime, this paper aims to identify illegal dumping cases by mining a publicly available data set containing more than 9 million waste disposal records from 2011 to 2017. Using behavioral indicators and up-to-date big data analytics, possible drivers for illegal dumping (e.g., long queuing times) were identified. The analytical results also produced a list of 546 waste hauling trucks suspected of involvement in illegal dumping. This paper contributes to the understanding of illegal dumping behavior and joins the global research community in exploring the value of big data, particularly for combating urban crime. It also presents a three-step big data-enabled urban crime identification methodology comprising ‘Behavior characterization’, ‘Big data analytical model development’, and ‘Model training, calibration, and evaluation’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.