Abstract
Water pollution prevention and control of the Xiang River has become an issue of great concern to China's central and local governments. To further analyze the effects of central and local governmental policies on water pollution prevention and control for the Xiang River, this study performs a big data analysis of 16 water quality parameters from 42 sections of the mainstream and major tributaries of the Xiang River, Hunan Province, China from 2005 to 2016. This study uses an evidential reasoning-based integrated assessment of water quality and principal component analysis, identifying the spatiotemporal changes in the primary pollutants of the Xiang River and exploring the correlations between potentially relevant factors. The analysis showed that a series of environmental protection policies implemented by Hunan Province since 2008 have had a significant and targeted impact on annual water quality pollutants in the mainstream and tributaries. In addition, regional industrial structures and management policies also have had a significant impact on regional water quality. The results showed that, when examining the changes in water quality and the effects of pollution control policies, a big data analysis of water quality monitoring results can accurately reveal the detailed relationships between management policies and water quality changes in the Xiang River. Compared with policy impact evaluation methods primarily based on econometric models, such a big data analysis has its own advantages and disadvantages, effectively complementing the traditional methods of policy impact evaluations. Policy impact evaluations based on big data analysis can further improve the level of refined management by governments and provide a more specific and targeted reference for improving water pollution management policies for the Xiang River.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have