Abstract
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on higher-order modified gravity, and in particular on: (i) $f(G)$ Gauss-Bonnet gravity, and $f(P)$ cubic gravities, arising respectively through the use of the quadratic-curvature Gauss-Bonnet $G$ term, and the cubic-curvature combination, (ii) string-inspired quadratic Gauss-Bonnet gravity coupled to the dilaton field, (iii) models with string-inspired quartic curvature corrections, and (iv) running vacuum models. We perform a detailed investigation of the BBN epoch and we calculate the deviations of the freeze-out temperature $T_f$ in comparison to $\Lambda$CDM paradigm. We then use the observational bound on $ \left|\frac{\delta {T}_f}{{T}_f}\right|$ in order to extract constraints on the involved parameters of various models. We find that all models can satisfy the BBN constraints and thus they constitute viable cosmological scenarios, since they can additionally account for the dark energy sector and the late-time acceleration, in a quantitative manner, without spoiling the formation of light elements during the BBN epoch. Nevertheless, the obtained constraints on the relevant model parameters are quite strong.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.