Abstract

Abstract This paper is concerned with the number of limit cycles of a cubic system with quartic perturbations. Fifteen limit cycles are found and their distributions are studied by using the methods of bifurcation theory and qualitative analysis. It gives rise to the conclusion: H(4)⩾15, where H(n) is the Hilbert number for the second part of Hilbert's 16th problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.