Abstract
In this paper we formulate a predator–prey system in two patches in which the per capita migration rate of each species is influenced only by its own density, i.e. there is no response to the density of the other one. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation, i.e. the stable constant steady state loses its stability and spatially non-constant stationary solutions, a pattern emerge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.