Abstract
The Duffing equation with even-odd asymmetrical nonlinear-restoring force and one external forcing is investigated. The conditions of existence of primary resonance, second-order, third-order subharmonics, morder subharmonics and chaos are given by using the second-averaging method, the Melnikov method and bifurcation theory. Numerical simulations including bifurcation diagram, bifurcation surfaces and phase portraits show the consistence with the theoretical analysis. The numerical results also exhibit new dynamical behaviors including onset of chaos, chaos suddenly disappearing to periodic orbit, cascades of inverse period-doubling bifurcations, period-doubling bifurcation, symmetry period-doubling bifurcations of period-3 orbit, symmetrybreaking of periodic orbits, interleaving occurrence of chaotic behaviors and period-one orbit, a great abundance of periodic windows in transient chaotic regions with interior crises and boundary crisis and varied chaotic attractors. Our results show that many dynamical behaviors are strictly departure from the behaviors of the Duffing equation with odd-nonlinear restoring force.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have