Abstract

In this paper, bifurcation trees of periodic motions to chaos in a parametric oscillator with quadratic nonlinearity are investigated analytically as one of the simplest parametric oscillators. The analytical solutions of periodic motions in such a parametric oscillator are determined through the finite Fourier series, and the corresponding stability and bifurcation analyses for periodic motions are completed. Nonlinear behaviors of such periodic motions are characterized through frequency–amplitude curves of each harmonic term in the finite Fourier series solution. From bifurcation analysis of the analytical solutions, the bifurcation trees of periodic motion to chaos are obtained analytically, and numerical illustrations of periodic motions are presented through phase trajectories and analytical spectrum. This investigation shows period-1 motions exist in parametric nonlinear systems and the corresponding bifurcation trees to chaos exist as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.