Abstract

The dynamical behavior of an SIR epidemic model with birth pulse and pulse vaccination is discussed by means of both theoretical and numerical ways. This paper investigates the existence and stability of the infection-free periodic solution and the epidemic periodic solution. By using the impulsive effects, a Poincaré map is obtained. The Poincaré map, center manifold theorem, and bifurcation theorem are used to discuss flip bifurcation and bifurcation of the epidemic periodic solution. Moreover, the numerical results show that the epidemic periodic solution (period-one) bifurcates from the infection-free periodic solution through a supercritical bifurcation, the period-two solution bifurcates from the epidemic periodic solution through flip bifurcation, and the chaotic solution generated via a cascade of period-doubling bifurcations, which are in good agreement with the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.