Abstract
In this paper, we consider a simple discrete-time single-directional network of four neurons. The characteristics equation of the linearized system at the zero solution is a polynomial equation involving very high-order terms. We first derive some sufficient and necessary conditions ensuring that all the characteristic roots have modulus less than 1. Hence, the zero solution of the model is asymptotically stable. Then, we study the existence of three types of bifurcations, such as fold bifurcations, flip bifurcations, and Neimark–Sacker (NS) bifurcations. Based on the normal form theory and the center manifold theorem, we discuss their bifurcation directions and the stability of bifurcated solutions. In addition, several codimension two bifurcations can be met in the system when curves of codimension one bifurcations intersect or meet tangentially. We proceed through listing smooth normal forms for all the possible codimension 2 bifurcations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.