Abstract

Three kinds of bifurcations of two coupled Rulkov neurons with electrical synapses are investigated in this paper. The critical normal forms are derived based on the center manifold theorem and the normal form theory. For the flip and the Neimark–Sacker bifurcation, the quartic terms and above in the normal forms are defined as higher order terms, which originate from the Taylor expansion of the original system. Then the effects of the quartic and quintic terms on the flip and the Neimark–Sacker bifurcation structure are discussed, which verifies that the normal form is locally topologically equivalent to the original system for the infinitesimal 4-sphere of initial conditions and tiny perturbation on the bifurcation curve. By the flip-Neimark–Sacker bifurcation analysis, a novel firing pattern can be found which is that the orbit oscillates between two invariant cycles. Two disconnected cardioid cycles also appear, which makes one, two, three, four, etc. turns happen before closure. Finally, we present a global bifurcation structure in the parameter space and exhibit the distribution of the periodic, quasi-periodic and chaotic firing patterns of the coupled neuron model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call