Abstract

The production of oxygen through phytoplankton photosynthesis is a crucial phenomenon in the dynamics of marine ecosystems. A generic oxygen-phytoplankton interaction model is considered to comprehend its underlying mechanism. This paper investigates the discrete-time dynamics of oxygen and phytoplankton in aquatic ecosystems, incorporating factors that cause phytoplankton mortality due to external influences. We explore the conditions for the local stability of steady states concerning the oxygen content in dissolved water and phytoplankton density. The analysis reveals that the model undergoes a co-dimension one bifurcation, encompassing flip and Neimark–Sacker bifurcations, utilizing the center manifold theorem and bifurcation theory. To manage the chaos resulting from the Neimark–Sacker bifurcation, we apply the OGY feedback control method and a hybrid control methodology. Finally, we present numerical simulations to validate the theoretical discussion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.