Abstract

In this study, a discrete-time prey-predator model based on the Allee effect is presented. We examine the parametric conditions for the local asymptotic stability of the fixed points of this model. Furthermore, with the use of the center manifold theorem and bifurcation theory, we analyze the existence and directions of period-doubling and Neimark-Sacker bifurcations. The plots of maximum Lyapunov exponents provide indications of complexity and chaotic behavior. The feedback control approach is presented to stabilize the unstable fixed point. Numerical simulations are performed to support the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.