Abstract

In this paper, the qualitative behavior of two discrete-time glycolysis models is discussed. The discrete-time models are obtained by implementing forward Euler’s scheme and nonstandard finite difference method. The parametric conditions for local asymptotic stability of positive steady-states are investigated. Moreover, we discuss the existence and directions of period-doubling and Neimark–Sacker bifurcations with the help of center manifold theorem and bifurcation theory. OGY feedback control and hybrid control methods are implemented in order to control chaos in discrete-time glycolysis model due to emergence of period-doubling and Neimark–Sacker bifurcations. Numerical simulations are provided to illustrate theoretical discussion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call