Abstract

Photocatalytic performance of polymeric carbon nitride (CN) is primarily restricted by limited light utilization and poor charge separation efficiency. To this end, skeleton modification strategy was adopted by attaching thiophene ring and polar nickel complex (NiL) onto CN. The obtained bifunctionalized carbon nitride (TCN-NiL) displayed obviously elevated optical absorption and photoexcited charge separation efficiency. The NiL, with polar structure, plays as active sites like cocatalyst thus exhibited platinum-like H2 evolution activity from water splitting under visible light. The optimized photocatalytic H2 generation rate over TCN-NiL reached 136.7 μmol·h−1 without any cocatalyst, the highest rate reported so far in noble-metal-free CN-based catalysts, which is 5 times of that of CN loaded with 3 wt% Pt. Additionally, the maximum wavelength of performing H2 production capacity over TCN-NiL extends to 550 nm from 450 nm of CN, suggesting an excellent visible light absorption ability. This work provides a way for modifying CN to enhance the photocatalytic activities in a noble metal free system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.