Abstract
Solid-state polymer electrolytes (SPEs) are expected to guarantee safe and durable operations of lithium metal batteries (LMBs). Herein, inspired by the salutary poly(vinyl ethylene carbonate) (PVEC) component in the solid electrolyte interphase, cross-linking vinyl ethylene carbonate and ionic liquid copolymers were synthesized by in-situ polymerization to serve as polymer electrolyte for LMBs. On one hand, due to rich ester bonds of PVEC, Li+ could transfer by coupling/decoupling with oxygen atoms. On the other hand, the imidazole ring of ionic liquid could facilitate the dissociation of lithium salt to promote the free movement of Li+ . The bifunctional component synergistically increased the ionic conductivity of the SPE to 1.97×10-4 S cm-1 at 25 °C. Meanwhile, it also showed a wide electrochemical window, superior mechanical properties, outstanding non-combustibility, and excellent interfacial compatibility. The bifunctional copolymer-based LiFePO4 batteries could normally operate at 0 to 60 °C, making them a promising candidate for wide-temperature-rang LMBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have