Abstract
A series of bifunctional Ln(III)-based coordination polymers (CPs) {Ln(L)(DMA)2(NO3)}n [Ln(III) = Eu (1), Gd (2), and Dy (3); organic ligand H2L = 2,2'-(1,3,5,7-tetrahydroxyoctahydro-4,8-ethanopyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)diacetic acid)] have been successfully synthesized. CPs 1-3 are isostructural and constructed from the dimeric Ln2 unit in which two adjacent LnIII ions are bridged by two μ3-carboxyl oxygens, and the Ln2 dimeric unit is connected by two NO3- ions, four DMA molecules, and four completely protonated L2- ligands forming a 2D layer structure. The magnetic research reveals that CP 2 shows a significant cryogenic magnetocaloric effect (-ΔSm = 22.9 J kg-1 K-1; T = 2.0 K and ΔH = 7.0 T), whereas CP 3 exhibits slow magnetic relaxation property under Hdc = 0 Oe field. Additionally, the luminescence explorations revealed that CP 1 can act as a recyclable luminescent probe for pollutant acetylacetone among various small organic solvent molecules, and the corresponding detection limit is 10-7 mol/L. More importantly, CP 1 also exhibits good catalytic performance in the cycloaddition reaction of CO2 and epoxides or cyanamides under mild conditions. As far as we know, CP 1 represents the first bifunctional lanthanide homogeneous catalyst that can efficiently catalyze the reaction of cyanamides/epoxides with CO2 simultaneously.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have